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For one-dimensional systems interacting via a two-body potential, the sequence 
of ground states is proved to converge to an infinite lattice, for a large open 
class of interactions, containing in particular the Lennard-Jones potential. 
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1. INTRODUCTION 

This paper is the fourth of  a series devoted to the classical theory of  crystals, 
and deals with one-dimensional lattices. (1-4) 

We consider linear systems of  identical particles, interacting via a two- 
body potential, and the sequence of  the ground states for these systems, 
labeled by the number n of  particles. Then we prove that, for a large class of  
realistic potentials (including the Lennard-Jones potential), this sequence 
converges to a periodic lattice. Moreover, the class of  potential is explicitly 
defined by sufficient conditions bearing on the potential and its two first 
derivatives. 

Our results thus justify in this case the assumption, usually admitted 
without proof, that the ground states of  such systems are lattices, and 
provide methods for more general cases. 

This work makes use of  a precise definition of  what is meant by 
convergence toward a lattice: we shall say that a sequence of  equilibria 
converges to a lattice if the average spacings between particles converge to a 
limit, while the dispersion of  these spacings remains bounded, allowing for 
boundary deformations which are expected, from a physical point of  view, to 
become independant of  the size of  the system. 
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We introduced this definition in a previous paper, ~4~ in which we 
established its physical relevance by proving its structural stability: The 
property for a potential to give rise to a lattice in the above sense is 
preserved under perturbation. 

The problem of the infinite volume ground state has been recently 
studied by Gardner and Radin. ~5) These authors, dealing with the Lennard- 
Jones potential, proved by direct calculations that the spacings between 
neighboring particles tend, in the infinite volume limit, to a unique limit. 

The results presented in this work are more general and more precise: 
more general, because they deal with a whole class of potentials ruled by 
fairly weak conditions, and more precise, because our definition of the 
convergence toward a lattice provides a control of the boundary effects. 

2. DEFINITIONS AND METHODS 

The configuration space of n + 1 particles in one dimension is given by 

Q(n+l )  : {q ~ ~"+ '  I qi < qi+,, i =  1 ..... n} (2.1) 

The translation invariance of the system is taken into account by 
reducing the configuration space to 

Y ~") = {xE ~"  Ix; > 0, i =  1,...,n} (2.2) 

where x i = qi+l - qi. Let ~0 C C~(]0, oo [) specify the two-body interaction. 
Then one easily checks that the potential energy q~r ~ C~(X  ~")) of n + 1 
particles is defined by 

~o~")(x) = ~ ~") ~o(xi) (2.3) 
I 

where the summation Y~") runs over all intervals i =  { j , j  + 1,.., k -  1, k} in 
the set I1,..., n} and where x1= ~ i~ ix i ,  i.e., x t = q k + ~ - q j .  In the following, 
lit denotes the number of elements of I; thus, for instance, I I [=  1 
corresponds to neighboring particles q; and q:+l. 

A configuration x C X ~") is an equilibrium iff the differential dq~")(x) 
vanishes, i.e., all partial derivatives vanish at x. 

The components of d~o~")(x) are easily derived from (2.3): 

(d~o{m(x)), = - ~ x  i ( x ) =  ~ <") ~0'(xr) (2.4) 
I ~ i  

Let Hxq~ ~") denote the n X n symmetric matrix of the second derivatives 
of ~0 ~n) at x. 
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If  x is an equilibrium configuration for ~0 ("), Hx~O (") is just the Hessian 
of (p(n) at x, which describes the mechanical  stability of  the given 
equilibrium. For any x C X (n) 

(n) c32q ~(n) 
(H,(o )ii = ~x i exj (x) = ~ (") ~o"(Xl) (2.5) 

I ~ i , j  

which is equivalent to 

H (n) X 7(n) x~o = , -  ~ (")(o"(x,) dxi @ dx i 
i , j  l ~ i , j  

If  Hxcp ~") is of  maximal  rank, then the equilibrium configuration x is 
mechanical ly stable iff the Hessian is positive definite, as a quadratic form 
on ~" .  Moreover,  the spectrum of Hxc# ~") is directly linked to the phonon 
spectrum of  the system which is derived from the Hessian of  the energy with 
respect to absolute positions q,., i = 1,..., n + 1. 

In a previous paper, ~4) we proposed a definition of  the proper ty  for an 
interaction (p to give rise to a lattice, as a limit of  finite equilibrium con- 
figurations. 

We proved then that this property is structurally stable, i.e., if a given 
interaction (p gives rise to a lattice according to this definition, then all 
neighboring interactions share the same property. 

Let P be the projection operator  on N", given by 

P x = X  with X i = n - l ~ " ) x j  (2.6) 
) 

Then Y is a configuration with a constant spacing equal to the mean spacing 
of x. 

Definition 2.1. For  any n >/ 1 and x G X ~n), we define the dispersion 
a(x)  and the mean spacing :(x)  by 

e(x)  = jjx--Xl] = jl(1 - P ) x r j  (2.7) 

T( X)  = n - 1 / 2  N.X'[[ = rt -'/2 I[Px]l (2.8) 

Then obviously Ilxlj 2 = ~ ( x )  ~ + n r ( x )  2 and r(x) = IYi]. 

The mechanical  stability of  an equilbrium configuration x implies a 
lower bound on the Hessian, holding in some neighborhood of  x. 

A convenient basis of  such neighborhoods is given by 

O(x;a,  f l ) = { y c X ~ n ~ l a ( y - x ) < a , r ( y - x ) < t g }  (2.9) 

for any a,/? > 0. 
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Definition 2..2. Let ~ E C~(]0,  oo D be a two-body interaction. Then 
q~ is said to give rise to a lattice if there exists a sequence {x(~)} of stable 
equilibrium configurations of n + 1 particles such that the following 
conditions hold: 

L1. There exist constants a, fl > 0 and /2 > 0, such that for n large 
enough 

Hyq~ ~n) >/2, for any y C O ( x ( ~ ) ; a ,  fl) (2.10) 

where Hyr t") is the Hessian of q~(") at y. 

L2. There exists a constant s > 0 such that for n large enough 

a(x(.~) < s 

L3. There exists a constant a > 0 such that 

lim r(x(n)) -= a 

The physical meaning of this definition is discussed in (4) where its 
structural stability is proved. 

In this paper we are exclusively concerned with the ground state 
problem. The main result consists in the proof that for a large class of two- 
body interactions c~, the corresponding ground-states x~) converge to a 
lattice according to the above definition. 

The conditions defining the class ~ will be introduced in the following 
sections: In Section 3 we give sufficient conditions on the interaction 
implying that any equilibrium configuration x(n) of q9 (n) satisfies an uniform 
estimate of the form r 0 < x i < r 1, i = 1 ..... n, where r 0 and rl only depend on 

As we shall see, a divergence as low as o ( r ) ~  r -1 is possible at the 
origin. In Section 4, we obtain sufficient conditions for q~") to be a strictly 
convex function in given neighborhoods of the form 

K(n)(so, S1) = {X ~ X (n) l s0 < x i < s1, [ : 1,..., n} 

The class ~ is defined in such a way that the convexity of ~0 ~"; holds at 
least in Kt" ) ( ro , r l ) ,  which contains therefore the unique equilibrium 
configuration of the system. 

Then in Section 5 we prove that the sequence of ground states thus 
obtained, converges to the one-dimensional lattice of spacing a, 
corresponding to the absolute minimum of the energy per particle e(r)=- 

Z p>  l (o(pr). 
The different conditions are proved to be satisfied in particular by the 

Lennard-Jones potential CLs(r)= r - l z -  r -6,  which therefore belongs to ~ .  
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3. BOUNDS ON THE SPACINGS OF EQUILIBRIUM 
CONFIGURATIONS 

In this section we derive upper and lower bounds on the spacings x i of  
any equilibrium configuration x ~ , ~ = ( x l , . . . , x , ) ,  for an interaction ~0 
satisfying the conditions given in the following definition. 

Definition :3.1. Let ~0 be the class of  interactions (o E C~( ]0 ,  oo D 
such that the following conditions hold: 

( I )  3r 1 > 0 such that  

q ~ ' ( r ) < 0  for O < r < r 1 

(2) 3r 2 > 0 such that 

and (0'(r) > 0 for r > r~ (3.1) 

( o ' ( r ) > O  f o r 0 < r < r  2 and q~"(r)~<0 for r / > r  2 (3.2) 

(3) The series e ' ( r )=Y'p>~lpq~ ' (pr  ) is convergent for r > 0  and 
3r 0 > 0 such that 0 < r < r o implies 

e'(r)  + /X ~ p ( ( o ' ( r z ) - ( o ' ( p r ) )  < 0 (3.3) 
l < p ~ N  

where N = E(r2/r  ) is the integer part  of r2/r and where the sum stands for 
zero if N ~< 1. 

These conditions define a large class of  interactions, actually an open 
one for the Whitney topology of C~176 oo ])~6) which contains for instance 
the Lennard-Jones potential q~Ls(r) = r -12 - r 6. 

In this case, rl_~ 1.122, r 2 ~  1.244 and one checks that  ro=  1.119 
satisfies the third condition. More generally, we have 

k e m m a  3.1.  For  any q~ ~ ~0, the following holds: 

0 < r o <~ a o < r, < r 2 (3.4) 

where a 0 is the first root  of  e'(r)  = O. 

Proof. Since ~ o ' ( r 2 ) = f ~ 9 " ( r ) d r  , (3.1) and (3.2) are compatible only 
if rl < r 2. 

Now, e ' ( r ) >  0 for r ) r ~ ,  thus e ' ( a o ) =  0 implies a o < r~. Finally, it 
follows from (3.3) that  r o <~ a for any root of  e'(r)  = O. | 

Actually,  in the Lennard-Jones case, r 0 is equal to the unique solution 
a -~ 1.119 of e'(r)  = 0. Notice that for r > r2/2 , (3.3) reduces to e ' (r)  < 0. I f  
N = E(r2/r  )/> 2, (3.3) then reads 

q ~ ' ( r ) + [ N ( N + l ) / 2 - - 1 ] ~ o ' ( r 2 ) +  ~ p~o ' (pr )<O (3.5) 
p ) N +  1 
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One easily checks that the second and third terms of (3.5) diverge as 
r -2 at the origin. It follows then that r 0 =a0 ,  first root of e ' ( r ) - - 0 ,  will 
satisfy condition (3.3), if q~' diverges fast enough at the origin. 

Theorem 3.1. For any ~ 0 ~  0 and all n>~2, any equilibrium 
configuration xt,) = (x I ,..., xn) of r satisfies r 0 < x i <~ r 1 for i = 1,..., n. 

Proof. The upper bound is trivial since the interaction is supposed to 
be attractive for all r > rl.  

Let xtn)= (x 1 ,..., x , )  be an equilibrium configuration for ~0 ~ and let r = 
Inf{xf} = x k for some k. 

Then, using (2.4), the equilibrium condition d~o(")(xt,))--0 implies 

0 = + 

II1>1 

0=~0'(r)  + ~ " ' q ~ ' ( x , )  + ~ " '  ~0'(x,) (3.6) 
I ~ k  I ~ k  

I<II [<N UI>/N+I 

Let N --- E(r2/r ), so that N <~ r2/r < N + 1. 
The first sum of (3.6) is certainly bounded by [N(N + 1 ) / 2 -  1] ~'(r2). 

For any term in the second sum, we have x t > ~ [ I l r > / ( N +  l ) r > r  z, and 
therefore, using (3.2), q~'(xt)~< ~0'(111 r). Thus 

0 ~ < ~ o ' ( r ) + [ N ( N + l ) / 2 - 1 ] r  ~ p~o'(pr) 
p ) N +  1 

In view of (3.3), such a condition implies r >  r0, which achieves the 
proof. | 

In the case of the Lennard-Jones potential, the accuracy of the bounds 
1.119 < x i ~< 1.122 is almost unexpected, and suggests that boundary effects 
can be very small. But as precise as the estimate is, the existence of many 
equilibrium configurations is not ruled out, and the convergence to a simple 
lattice is not yet ensured. This is the purpose of the following sections. 

4. CONVEXITY OF THE N-BODY POTENTIAL AND 
MECHANICAL STABILITY 

In this section we give sufficient conditions on the interaction q~, for the 
n-body potential r to satisfy a certain convexity property in the 
configuration space. 

The convexity of q~"), as a function of x = ( x  1 ..... x , ) ,  is directly 
connected to the Hessian Hx~0 (") defined in Section 2. A positive definite 
Hessian in a convex domain implies the convexity of ~(~) and the existence 
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of at most  one equilibrium configuration in that  domain,  which is therefore 
mechanical ly stable. 

The sufficient conditions given in this section express the idea that the 
nearest-neighbour terms of the Hessian dominate  the others, which seems to 
be the rule as well for real three-dimensional lattices. Let H.g0(" )=  h ( " ) =  
2 p = l  h(n 'P)  with  

h("' ;)  = ~ (") ~ r 1 6 2 1 7 4  ] (4.2) 
i , j  l ~ i , j  

IXl =p 

Then we have the following. 

Lemma 4.1. 
hotd: 

For  any x E X ("), and p = 1,..., n the following bounds 

_p2 sup { [~o" (x t ) l } Id~h(" 'P )~p  2 sup {[~o"(xt)l}Id (4.3) 
Ill =P 111 =P 

where the inequality is that of  symmetr ic  operators  on ~ "  and Id  is the unit 
operator.  

Proof. For any p = 1 ..... n and e = • 1 define 

M(en,p)  = p2 sup {lr Id  + eh ~",;) (4.4) 
I/I = p  

M ~"'') is a symmetr ic  operator  and a classical theorem asserts Then __~ 
that Mr n'p) is positive as soon as its matrix elements satisfy 

>1 Z l( M ,  )ijt for i =  1,...,n 
]4:i 

Consider the diagonal term 

(m(n,p).• __ _2 Z ( n )  e ) i i -  P sup  {l~0'/(Xl)t} -~- ~ ~gl/(Xi) 
111 = p  i ~ i  

I/f = p  

>1 (pZ _ p)  sup {[O"(x,)l} 
I/I =p 

Consider now an off-diagonal term 

(4.5) 

I 9 i , j  
I/I = p  

I f p  < ] i - - j [ ,  then no interval I o f p  points can connect i and j ,  so that  
( M (n'p)] = O. - .-~ ti] 
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If p > / l i - j [ ,  there exist at most p - [ i - j  I such intervals and 
(~lar(n p)'~ ~"~ ,ij ~< (P - [ i - - j [ )  suPllt=p{[(O"(Xl)[}. Therefore 

i+p 

I(M~""')t/~< Z 
]4:i ]=i--p 

(p - [ i - J l )  sup {l~o"(x,)l} 
I/I =P 

p 

~ < 2 ~  
k=l  

(p -- k) l~uPp{lq~"(Xl)l} 

(pZ _ p)  sup {[q/'(x,)l} 
I/I =p 

(4.6) 

It follows from (4.5) and (4.6) that M(~ "p) >/0 for e = • and thus 

_pZ ,z,sup:p {l~0"(xl)l}/d ~ h (~ ~ pZ iSUpp {i ~0,,(x,)l }/d 

which completes the proof. II 
Now, using this lemma, we derive an upper and a lower bound for the 

Hessian Hx~O (") in domains of the form 

K{")(So, $1) 7--- {X ~ X (n) I So < xi < S1, i ~-- 1 ..... n} 

Theorem 4.1. For any ~0~C*(]0, oo[) and any 0 < s  0<s  1, the 
following bounds hold for all x E K(")(so, sl): 

{ inf {(o"(r)}-- ~ p2 (sup 0 {[(o"(pr)[}} Id<~ Hx~ ("' 
(So'Sl) p>l  

~<{ sup {~0"(r)} + ~ p2 sup {i(o"(pr)l}}Id (4.7) 
(so'sO p > l  (So,S1) 

Proof. The first term of the decomposition of Hxq) (") defined by (4.2), 
is given by 

h (n'l) = ~2 (n) ~ot'(xi) d x  i ~) d x  i (4.8) 
i 

Then h ~"'1) is clearly a diagonal operator which corresponds exactly to the 
nearest-neighbour terms of the total Hessian. Therefore 

sup {(o"(r)} Id  inf {q/'(r)} Id  <~ h ~"'" <. 
(So,SO (So,SO 

(4.9) 

For any x C K{")(So, sl), 1I I s o < x I < 1I I s 1, and (4.7) follows from (4.9) and 
Lemma 4.1. | 
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In Section 3, we proved that for any ~ 0 ~ 0  and for all n />2 ,  the 
possible equilibrium configurations of 0 ("), all belong to K(n)(ro, r~) where 
r 0, r~ are independent of n. It is therefore natural to investigate the convexity 
of ~0 (") is this domain. We now define a class of interactions for which the 
lower bound given in the above theorem reads in a very simple way. 

Definition 4.1. Let ~ be the class of  interactions (OC~o (see 
Section 3), such that the following conditions hold: 

(1) The first root r 2 of ~o"( r )=0 ,  and r o, defined by (3.3), are such 
that 

(2) 
(3) 

r 2 < 2r o (4.10) 

(o" is decreasing in ]r o, rl[ and increasing in ]2r o, m [. 

The series e"(r)= ~p>, p~o"(pr) is convergent for r > 0 and 

t~(~) = e"(ro) + O"(rO - o"(ro) > 0 (4.11) 

(4) The series ~ p > l  p2 [~0'(pr)[ is convergent for r > 0. 

These conditions define an open class of  interactions for the Whitney 
topology of  C~176 oo [), which contains the Lennard-Jones potential. In this 
particular case, r0_~ 1.119 and r 2 ~  1.244 satisfy (4.10); ~0~'~ has a unique 
root r 3 ~- 1.366 and this insures condition (2). Finally, g(r ~ 14. 

We observed in Lemma 3.1 that for any ~ ~ ~o, the possible roots of 
e'(r) = 0 all belong to (r o, rl). A consequence of the following theorem is 
that for rp C ~ ,  e(r) is convex in (r o, rl), but the most important result 
concerns the ground state. 

Theorem 4.2. For any ~ o C ~ ,  and all n~> 2, ~o (") has a unique 
equilibrium configuration x(.) in X (~), therefore its ground-state, which lies in 
K~n)(ro, ri)  = { x C X  ~") ] r 0 < x t < r l ;  i =  1,..., n}. 

Proof. Since ~ c ~g%, we already know, from Theorem 3.1 that all 
equilibrium configurations of  r162 belong to K~")(ro, rl), The uniqueness will 
follow from the convexity of  ~0 r in this domain. In view of Theorem 4.1, it 
is sufficient to prove that 

inf {~o"(r)}- ~,  p2 s u p  {[~o"(pr)[} > 0 (4.12) 
(r~ p > l  ~ro'rl) 

Now, since ~o" is decreasing in ]r o, r 1 [, inf(ro,q){~o"(r)} = ~o"(rl). 
For any term in the sum, pr ~ 2r 0 >~ r 2. Thus ]O"(pr)] =--~o"(pr)  and 

since -~o" is assumed to decrease, sUper0, r,){I ~0"(pr)]} = --q/'(pro). 
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Therefore, the lower bound for the Hessian reads ~0"(rl) + 
Y'p>lp2~o"(pro), which is clearly equal to /z(q)) defined by (4.11), and 
condition (3) insures the convexity, which achieves the proof. II 

Notice that the conditions (1), (2), and (3) of  Definit ion4.1 are 
sufficient but not necessary to insure the convexity of  ~o (") in K(n)(ro, r~). 
Actually,  they have the advantage of involving ~0 and e in a very simply way. 

In a classical series of  papers,  M. Born and coworkers tv) derived the 
mechanical  stability of  an infinite lattice with respect to infinitesimal 
periodic perturbations, using an elementary version of the conditions of  
Definition 4.1. The above theorem improves this particular result in two 
directions: first, the mechanical  stability holds in an open neighborhood of 
the equilibrium configuration, and second, this property is satisfied uniformly 
for all finite systems. 

As a final remark,  we observe that  the convexity of r may  hold in a 
larger domain than K(")(ro, ra). Actually,  if s 0, s~ are such that 0 < s o < s 1, 
with r z < 2s0, if ~0" is decreasing in ]s 0, s~[ and increasing in ]2s0, m [ ,  then 
a uniform lower bound of Hxqr ~, for x C Kt")(So, s~), is given by e"(So)+ 
~"(s,)-~"(So). 

In the case of  the Lennard-Jones potential, for instance, this lower 
bound is strictly positive for s o = 1 and s~ = 1.22. 

5. CONVERGENCE OF FINITE EQUILIBRIUM CONFIGURATIONS 
TO AN INFINITE LATTICE 

In this last section, we prove that for any ~0 C ~ ,  the sequence of 
ground states x(,) of  ~0 (") converges to an infinite lattice, according to an 
appropriate  definition given in Section 2. 

Recall that ~ is the set of  interactions ~0 E C~( ]0 ,  oo [) such that the 
following conditions hold: 

(1) 3r I > 0 such that ~o' < 0 in ]0, q [  and ~o' > 0 in ]r~, co[. 

(2) 3r  2 > 0 such that rp" > 0 in ]0, r2[ and ~o" ~<0 in [r2, oo[. 

(3) The series e'(r)=y'p>~lp~o'(pr), e"(r)=y~p>~lp2~o"(pr) and 
Y~p>l p2 [~o,(pr) i are convergent for r > 0. 

(4) ~r o > rJ2  such that ~o" is decreasing in ]ro,r~[,  increasing in 
]2r0, oo [; moreover  e"(ro) + ~0"(rl) - -  ~0"(r0) > 0 and r < r 0 implies e'(r) + 
Y~l<w<~ P(~~ -- ~o'(pr)) < 0, where N = E(rJr)  is the integer part  of  rJr, 

Under the above conditions, the ground states xr of  ~0 Cn~ have been 
proved to belong to Kr rl) = {x E X ~ I ro < xi < r l ,  i = 1,..., n}. But so 
far, the convergence of the ground states to a complex or even to an incom- 
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mensurate lattice is not yet ruled out. This is the purpose of the following 
theorem. 

Theorem 5.1. For any (p C c~, the sequence of  ground states x(n ) of 
~o (~) satisfies the following bound: 

[Ix(n)- a~.)l[ ~ [e ' (ro)  + ~o"(rl) -- (p"(ro) ] -1(2DID2) 1/z (5.1) 

where a(n ) = (a,..., a), a is the unique root of e'(r) = 0 and 

D1 = ~ p I~0'(pa)l (5.2) 
p > l  

D 2 =  ~ p2 iq~,(pa) I (5.3) 
p > l  

Proof. We prove in Lemma 3.1 that r o ~<a < r I thus a(n ) belongs to 
the closure of K(n)(ro, rl). 

Let x~t = 2a(,) + (1 - -2)  X(n ) for 2 E [0, 1]. Then 

' 8 
d~o(")(a(n)) - dg(")(x(,)) = d2 ~-~ (d~o(n)(xa)) 

which reads 

d(o(")(a(,)) = ~ d2 Hx~ (o(")(a(n) -- x(n)) (5.4) 

Since the whole path xa,  2 C [0, 1 ] is in the closure of K(n)(ro, r~) the 
lower bound e"(ro) + ~o'(rl) - (o'(ro) for Hxa~0 (") holds. Therefore 
fo ~ d2 Hxa ~o (") is positive definite and 

[s2 ]-' a(.) - x(.) = d2 H ~  ~ ( n )  d~o(.)(a(.)) 

which implies 

(5.5) 

Ilx(,) -- a(,)]l ~< [e '(ro)  + ~o"(r0 - (P'(ro)]-llld~o(")(a(,))ll (5.6) 

Now a~0(")(a(.)) = Z}")[Z/<~e ~'(111 a)] dx i and since 
Y~p>l p~o'(pa)= 0, we have for any component  i, 1 ~< i K n: 

e ' (a )  = 

X ('>9'(111a)=- Z ~'(I/la) 
i S i  l ~ i  

I ~:{1 . . . . .  n] 
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where the second sum extends to all intervals I containing i but not included 
in { 1,..., n }. Therefore 

Then 

~ t " ~ 0 ' ( L l l a  ) ~ ~V pl~o ' (pa) l  
I ~ i  p > i n f { i , n - i +  11 

Ildo ")(a .))ll 2 2 Z p I o'(pa)l 
i ) l  i 

The bound (5.1) follows then from (5.6) and the definitions (5.2) and 
(5.3). | 

The proof  of  the convergence of  the sequence of ground states to a 
lattice, according to definition (2.2), is now straightforward: 

The mechanical  stability is already insured by ~0 E c~. Now, one easily 
checks that [ IX(n)  - -  a(,)II 2 - -  o ( x ~ . ~ )  2 + n[r(xt,)  - a)] 2, where o and r are the 
dispersion and mean spacing defined by (2.7) and (2.8). The uniform bound 
on I l x t , ) -  a(,)l I given in the above theorem implies a similar bound for the 
dispersion o(xt,)), and the convergence of the mean spacings r(x~,)) to a. 
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